詳細介紹
ERCC1 人切除修復交叉互補基因1
廣州健侖生物科技有限公司
ERCC1 是核苷酸切除修復通路中高度保守的切除性核酶,是有效修復烷化劑誘導的DNA 復合物的必要條件。研究資料表明,ERCC1 蛋白表達陰性的患者應用順鉑輔助化療可能獲得效果良好;ERCC1 蛋白表達陽性可能提示存在這鉑類藥物耐藥,ERCC1 可作為為患者是否應用順鉑輔助化療的參考依據之一。
我司還提供其它進口或國產試劑盒:登革熱、瘧疾、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團菌、化妝品檢測、食品安全檢測等試劑盒以及日本生研細菌分型診斷血清、德國SiFin診斷血清、丹麥SSI診斷血清等產品。
歡迎咨詢
歡迎咨詢
ERCC1 人切除修復交叉互補基因1
【產品介紹】
細胞定位:細胞核
克隆號:SP68
同型:IgG
適用組織:石蠟/冰凍
陽性對照:肺腺癌
抗原修復:熱修復(EDTA)
抗體孵育時間:30-60min
產品編號 | 抗體名稱 | 克隆型別 |
OB108 | ERCC1(人切除修復交叉互補基因1) | SP68 |
OB109 | ERG | EP111 |
OB110 | Factor Ⅷ(第八因子相關抗原) | polyclonal |
OB111 | Factor ⅩⅢa(第十三因子a) | EP3372 |
OB112 | FSH(卵泡刺激素) | polyclonal |
OB113 | Galectin-3(半乳糖凝集素-3) | 9C4 |
OB114 | GATA3(心肌轉錄因子3) | L50-823 |
OB115 | GCDFP-15(巨囊性病液體蛋白15) | EP1582Y |
OB116 | GFAP(膠質纖維酸性蛋白) | EP672Y |
OB117 | GH(生長激素) | polyclonal |
OB118 | Glucagon(胰高血糖素) | polyclonal |
OB119 | GLUT1(葡萄糖轉化酶) | polyclonal |
OB120 | Glycophorin A(血型糖蛋白A)或CD235a | GA-R2&HIR2 |
OB121 | Glypican-3(磷脂酰肌醇蛋白聚糖3) | 1G12 |
OB122 | Granzyme B(粒酶B) | polyclonal |
OB123 | GS(谷氨酰胺合成酶) | GS-6 |
ERCC1 人切除修復交叉互補基因1
想了解更多的產品及服務請掃描下方二維碼:
【公司名稱】 廣州健侖生物科技有限公司
【市場部】 歐
【】
【騰訊 】
【公司地址】 廣州清華科技園創新基地番禺石樓鎮創啟路63號二期2幢101-103室
程臨釗和同事們認為,一種解決方案就是在實驗室中培養出與每個患者自身遺傳物質相匹配,因此能夠逃避免疫系統的血細胞。他的研究小組已經設計出了一種方法利用干細胞來生成人類血細胞。然而對于鐮狀細胞病患者而言有一個問題,就是實驗室培養的帶有他們遺傳物質的干細胞同樣具有這種鐮狀細胞缺陷。為了解決這一問題,研究人員一開始從患者處取得血細胞,將它們編程為了誘導多能干細胞(iPS細胞)。
CRISPR源于包含著稱作為成簇的規律間隔的短回文重復序列(clustered regularly interspaced short palindromic repeats)DNA的片段的微生物免疫系統。這一工程編輯系統利用了一種DNA剪切酶和一段短DNA的片段,后者可將這一工具引導到研究人員希望在基因組中引入切口或其他改變的位置。以往的研究表明,相比于其他的基因組編輯技術例如轉錄激活樣效應因子核酸酶(transcription activator-like effector nuclease, TALEN),CRISPR能夠通過這些干預更有效地引起基因組改變或突變。
隨后研究人員利用這種強大的CRISPR技術剪掉了鐮狀細胞遺傳變異,用健康的基因版本替代了它。zui后一步就是誘導這些干細胞生成成熟的血細胞。研究人員發現,這些基因編輯干細胞能夠和未接受CRISPR處理的干細胞一樣有效地生成血細胞。
Cheng Linzhao and colleagues believe that one solution is to train in the laboratory with each patient's own genetic material to match, so to escape the immune system's blood cells. His team has devised a way to use stem cells to generate human blood cells. However, there is a problem with sickle cell disease in that laboratory-grown stem cells with their genetic material also have such sickle cell defects. To address this issue, researchers initially acquired blood cells from patients and programmed them to induce pluripotent stem cells (iPS cells).
CRISPR is derived from the microbial immune system that contains fragments of sequences known as clustered regularly interspaced short palindromic repeats. The engineering editing system uses a DNA-cleaving enzyme and a fragment of short DNA that directs the tool to the point where researchers want to introduce nicks or other changes in the genome. Previous studies have shown that CRISPR can cause genomic alterations or mutations more efficiently than these other genomic editing techniques, such as transcriptional activator-like effector nuclease (TALEN).
Researchers then used this powerful CRISPR technique to cut off the sickle cell genetic variation, replacing it with a healthy genetic version. The final step is to induce these stem cells to produce mature blood cells. The researchers found that these genetically engineered stem cells were able to produce blood cells as efficiently as stem cells that did not receive CRISPR.