久久国产精品午夜一区_91精品國產高清久久久久久91_?级毛片免费全部播放_欧美色图在线视频一区二区三区_国产综合亚洲一区二区三区_中文字幕熟女网_国产精品男人爽免费视频_九九无码网战_亚洲日本三级电影在线观看_欧美日韩DVD手机在线不卡

您好, 歡迎來到化工儀器網

| 注冊| 產品展廳| 收藏該商鋪

13810146393

technology

首頁   >>   技術文章   >>   品質檢測:高光譜成像技術在紅棗研究中的應用進展(下)

江蘇雙利合譜科技有限公司

立即詢價

您提交后,專屬客服將第一時間為您服務

品質檢測:高光譜成像技術在紅棗研究中的應用進展(下)

閱讀:82      發布時間:2025-6-26
分享:

4.2高光譜成像技術在鮮棗內部品質檢測中的應用

(Shao et al., 2024)采用可見-近紅外(Vis-NIR)高光譜成像技術,探索了不同成熟階段冬棗的可溶性固形物含量(SSC)監測與貯藏期分析方法。通過支持向量回歸(SVR)和偏最小二乘回歸(PLSR)模型,研究了中熟與熟透冬棗的SSC與光譜數據之間的關系,結果表明SVR模型在篩選的有效波長下表現出最佳的預測性能,外部驗證集的決定系數(R2)和殘差預測偏差(RPD)分別為0.837和2.47(中熟)及0.806和2.28(熟透)。該研究還發現,SSC與果實成熟度和貯藏期之間存在顯著的空間分布相關性,并利用預測圖展示了不同成熟度和貯藏期下SSC的時空演化。進一步,通過支持向量機(LIBSVM)庫建立了貯藏期分析模型,結果顯示中熟和熟透冬棗的貯藏期預測準確率分別為89%和91%。這些結果表明,高光譜成像技術在冬棗質量監測及貯藏期分析中具有重要潛力,能夠提供非破壞性的質量評估和儲藏期預測,促進冬棗在儲存和市場中的管理。

品質檢測:高光譜成像技術在紅棗研究中的應用進展(下)

圖11中熟(a)和熟(b)冬棗保質期的SSC可視化圖

(Ma et al., 2024)基于無人機(UAV)多光譜技術,提出了一種用于檢測紅棗果實水分含量(MC)和可溶性固形物含量(SSC)的無損檢測方法。研究利用DJI Phantom 4 RTK UAV搭載的多光譜相機,采集了不同相對方位角下的紅棗多光譜數據,并采用偏最小二乘回歸(PLSR)和支持向量機(SVM)構建了預測模型。研究發現,90°相對方位角下獲取的多光譜數據在MC預測中效果*佳,而180°相對方位角下的數據則在SSC預測中表現最佳。

研究進一步提出了相對方位角數據融合方法,通過將來自8個不同相對方位角的數據進行融合,建立了MC和SSC的聯合預測模型。結果顯示,相比于單一相位角的數據,多角度數據融合的模型在預測精度上有顯著提升,其中MC預測模型在PLSR與SVM模型中分別達到0.9067和0.9319的訓練集R2,1.9935和2.1368的RMSEP;而在SSC預測方面,SVM模型表現更優,訓練集R2為0.8624,預測集R2為0.7663。

品質檢測:高光譜成像技術在紅棗研究中的應用進展(下)

圖12無人機光譜采集

(Di et al., 2025)基于高光譜成像技術,提出了一種冬棗含水量的定量檢測方法,采用了光譜形態特征來提取與水分含量相關的特征。研究選取了四個特征波段(波峰R1、波谷R2、波峰R3、波谷R4)進行光譜形態特征提取,包含了波高、全寬半高、左坡、右坡、肩寬、峰區面積等七個形態參數。通過多元線性回歸(MLR)分析,建立了不同波段的回歸模型,分析了各特征波段對冬棗水分含量的影響。使用了部分最小二乘回歸(PLSR)模型來構建冬棗含水量的檢測模型,并利用競爭自適應重加權采樣(CARS)方法選擇有效的波長變量。結果表明,波谷R2(1146 nm)的回歸模型在校準集和預測集中的表現最佳,校準集的相關系數(Rc)為0.9942,預測集的相關系數(Rp)為0.8698,表明該模型具有較高的預測精度。

品質檢測:高光譜成像技術在紅棗研究中的應用進展(下)

圖13高光譜采集及分析可視化流程

(Zhao et al., 2020)探討了高光譜成像技術(HSI)在冬棗果實可溶性固形物含量(SSC)非破壞性測定與可視化中的應用。研究使用了兩個不同的光譜范圍:可見光-近紅外(Vis-NIR,380–1030 nm)和近紅外(NIR,874–1734 nm),并采用了面積歸一化(Area Normalization)方法,旨在減少果實表面球形形狀引起的光照不均勻性對反射率的影響。研究采用了線性最小二乘支持向量機(LS-SVM)和成功投影算法(SPA)進行建模,得出兩種光譜范圍下的回歸模型。結果表明,Vis-NIR范圍的LS-SVM模型在預測SSC時表現較好,預測的決定系數(Rp2)為0.894,殘差預測偏差(RPD)為3.07,相比之下,NIR范圍模型的表現稍遜。通過對區域感興趣(ROI)內的像素光譜進行處理和可視化,面積歸一化能夠顯著提高預測的準確性,特別是在果實中心和邊緣的反射率不均勻性問題上,進一步優化了預測地圖。此外,研究還比較了局部回歸模型(針對單一品種)與全局回歸模型(結合多個品種)之間的差異,發現全局模型的表現優于局部模型,能夠更好地預測不同品種的SSC。通過SPA波長選擇,減少了光譜數據的維度,同時保持了較高的預測準確度。

4.3高光譜成像技術在干棗內部品質檢測中的應用

(Günayd?n et al., 2025)探討了三種不同干燥條件(開窗陽光、閉陰陰涼、微波干燥)下紅棗切片的水分比(MR)預測及其與可見與近紅外光譜(Vis-NIR)的對比分析。研究使用了ASD FieldSpec handheld 2 Pro光譜儀,該儀器能夠在325–1075 nm波段范圍內提供高分辨率光譜數據。實驗中,紅棗切片在三種干燥條件下進行處理,并測量了包括顏色、光譜反射率、水合作用率(RR)、干燥動力學及最終厚度等參數。

微波干燥在最短的時間內(24分鐘)顯著提高了干燥效率,遠快于閉陰干燥(1140分鐘)和開窗陽光干燥(1680分鐘)。在顏色變化方面,微波干燥處理的紅棗切片顏色變化最小,保持了接近新鮮狀態的色彩,而陰涼干燥則因長時間暴露空氣中導致顏色的明顯變暗。針對水分比(MR)預測,基于多層感知機(MLP)和隨機森林(RF)算法的機器學習模型表現最佳,MLP的R值達到0.9997,RF為0.9968,顯著優于其他算法(如支持向量回歸SVR)。此外,通過植物指數(VIs)分析,微波干燥處理下的紅棗在所有指數中表現出*優結果。

品質檢測:高光譜成像技術在紅棗研究中的應用進展(下)

圖14不同干燥方式及對應干燥的棗片

(Li et al., 2022)利用短波紅外(1000~2500 nm)高光譜成像技術預測干哈密棗的可溶性固形物含量,并通過不同的回歸模型進行對比分析。研究采用ImSpector N25E光譜儀(Specim)和Zephir-2.5–320 CCD相機(Photon Etc.)的高光譜成像系統,結合150W鹵素燈光源,在黑暗環境下進行數據采集。實驗通過調整檢測位置(果柄朝上、果柄朝下、水平放置),發現果柄朝下的位置對SSC預測的準確性影響最佳。構建了卷積神經網絡(CNN)回歸模型,并與傳統的偏最小二乘回歸(PLSR)和支持向量回歸(SVR)模型進行了對比。使用競爭自適應重加權采樣(CARS)、遺傳算法(GA)和迭代保留信息變量(IRIV)算法選擇有效波長。結果表明,基于全光譜數據的CNN模型表現優異,預測決定系數(Rp2)為0.857,預測均方根誤差(RMSEP)為0.563,殘差預測偏差(RPD)為2.648,優于PLSR和SVR模型。與特征選擇相關的分析表明,CARS方法*適合PLSR和SVR模型的建模,而CNN模型在無需特征工程的情況下,能夠自動從光譜數據中提取深層特征,取得最佳預測性能。

品質檢測:高光譜成像技術在紅棗研究中的應用進展(下)

圖15干棗高光譜圖像采集和構建的光譜

(Wei et al., 2024)提出一種結合高光譜成像技術和光譜紋理特征融合的方法,用于估算和田棗的可溶性固形物含量(SSC)。采用了HySpex系列高光譜成像儀(Norsk Elektro Optikk A/S),其波長范圍為1003.22–2512.97 nm,掃描獲取了紅棗樣本的高光譜數據。在特征提取方面,研究結合了灰度共生矩陣(GLCM)、局部二值模式(LBP)與Gabor濾波器三種圖像紋理特征提取方法,進一步增強了空間信息。采用MOEA/D算法進行特征波長選擇,減少了光譜冗余,并提高了預測精度。研究使用了XGBoost集成學習模型進行SSC預測。與傳統的單純光譜特征模型相比,融合了空間紋理特征的模型在準確性上表現更優,預測決定系數(R2)達到0.9061,均方根誤差(RMSEP)為0.7031,殘差預測偏差(RPD)為3.2630,明顯優于單一光譜信息的預測結果。此外,研究還通過MOEA/D算法選擇的光譜波長(31個波長)提供了較高的預測性能,相較于傳統的SPA、CARS和UVE方法,表現出更好的靈活性和預測精度。

品質檢測:高光譜成像技術在紅棗研究中的應用進展(下)

圖16果實可溶性固形物(SSC)的高光譜成像技術估算流程圖。

(Tan et al., 2024)結合高光譜成像技術和深度學習方法,提出了一種用于不同貯存期干棗水分含量和總糖含量預測及貯存期分類的無損檢測方法。實驗采用了Vis-NIR(376–1044 nm)和NIR(915–1699 nm)高光譜成像系統,分別使用SOC 710VP和SOC 710SWIR設備進行數據采集。通過對三個貯存期(期1、期2、期3)的干棗樣本進行高光譜成像,研究構建了多種基于傳統機器學習算法(如RF、LR、SVM)與深度學習模型(如LeNet、ResNet、DenseNet、MobileNet、EfficientNet)的分類與回歸模型。

品質檢測:高光譜成像技術在紅棗研究中的應用進展(下)

圖17高光譜采集及感興趣區域的光譜提取過程

基于Vis-NIR數據的分類模型優于NIR數據,ResNet模型在Vis-NIR數據下的分類準確率達到99.86%,表現出*好的性能。通過PCA和SPA波段提取方法進行特征選擇,結果顯示SPA方法提取的特征波段模型優于PCA模型。此外,針對水分含量和總糖含量的預測,基于NIR數據的深度學習模型在水分預測上取得了R2值高達0.94,RPD值為4.45,表明該模型在多貯存期的預測效果優于傳統機器學習模型。

(Liu et al., 2024)探討了高光譜成像技術在干棗質量評估中的應用,重點研究了不同干燥條件下的干棗質量分類和可溶性固形物含量(SSC)的預測。實驗使用了可見-近紅外(Vis-NIR)高光譜成像系統,波段范圍為376–1044 nm,通過對不同成熟階段的棗(包括鮮棗、干棗、不同成熟度)進行掃描,結合圖像預處理(如區域歸一化、基線校正、多重散射校正等)提高數據的質量與準確性。研究使用了多種分類算法,包括線性偏最小二乘判別分析(PLS-DA)、K最近鄰(KNN)和支持向量機(SVM),并結合特征選擇方法(如成功投影算法(SPA)、競爭自適應重加權采樣(CARS)和無信息變量剔除(UVE))進行優化。研究結果表明,基于AN-UVE-SPA-SVM模型的分類準確率最佳,訓練集分類準確率達到96.0%,驗證集準確率為93.1%,顯示出較高的分類性能。在干棗的質量屬性分析方面,研究評估了硬度、可溶性固形物含量(SSC)和水分含量等指標,發現不同成熟度的干棗在SSC和硬度上存在顯著差異。PLSR模型在預測SSC和水分含量方面表現出色,結合AN-UVE-SPA方法選擇的特征波長,得到了較高的預測精度。

品質檢測:高光譜成像技術在紅棗研究中的應用進展(下)

圖18高光譜成像系統示意圖

(Liu et al., 2025)本研究提出了結合高光譜成像技術和深度學習模型(CNN-BiLSTM-SE)對紅棗熱風干燥過程中可溶性固形物含量(SSC)、可滴定酸度(TA)、水分和硬度等質量參數進行無損監測與過程評價的方法。實驗中,采用了SOC710高光譜成像系統,在55°C、60°C、65°C三個干燥溫度下進行干燥過程的實時監測。基于不同的預處理方法(如MSC、基線校正和MSC_1st),比較了傳統的PLSR、SVR模型與CNN-BiLSTM-SE模型的預測效果,發現CNN-BiLSTM-SE模型在預測紅棗質量參數方面表現最佳。

品質檢測:高光譜成像技術在紅棗研究中的應用進展(下)

圖19不同干燥階段的棗高光譜圖像,包括感興趣區域的確定和光譜數據的提取

研究表明,在不同的干燥階段,水分的降低與SSC和TA的增加呈顯著相關,且隨著干燥時間的延長,硬度在初期下降后逐漸回升。通過結合深度學習模型,能夠實現對不同干燥階段的質量參數空間-時間分布的可視化,為干棗干燥過程的質量控制提供了有效工具。進一步分析表明,CNN-BiLSTM-SE模型通過結合卷積神經網絡(CNN)、雙向長短期記憶(BiLSTM)網絡與Squeeze-and-Excitation (SE)注意力機制,能夠有效提取時間序列中的長期依賴關系,在水分、SSC、TA和硬度的預測中相較于傳統模型有明顯提升。該模型優化后的R2值分別為SSC 0.955、TA 0.919、硬度0.940、水分0.975,表明深度學習模型在高維數據處理方面具有顯著優勢。

1. 未來發展方向與研究前景

隨著科技的進步和市場需求的不斷變化,紅棗品質檢測技術也在不斷創新和發展,尤其是高光譜成像技術在農產品質量檢測中的廣泛應用,推動了紅棗產業的智能化、精準化發展。未來,紅棗品質檢測的研究前景將集中在以下幾個方面:

1.高光譜成像技術作為一種無損、高效的檢測方法,未來有望在紅棗品質控制中得到更廣泛的應用。隨著傳感器分辨率和數據處理算法的不斷提升,未來的高光譜成像系統將在空間分辨率和光譜分辨率方面實現更大的突破,能夠更精確地分析紅棗的內部質量,如糖分、酸度、水分等指標。同時,隨著大數據和云計算技術的發展,實時數據處理和遠程監控將成為紅棗品質檢測的常態,這不僅提升了檢測效率,也為生產企業的質量管理提供了更加全面的技術支持。

2.未來,自動化和智能化檢測系統將成為紅棗品質監控的主要方向。隨著人工智能技術,特別是深度學習和機器視覺的發展,基于紅棗的高光譜數據與圖像數據,結合卷積神經網絡(CNN)等深度學習模型,可以實現對紅棗品質的全自動高效檢測。這些技術將能夠實時監控紅棗的外觀、內部缺陷以及營養成分等,為紅棗的生產、加工和儲存提供持續的質量控制,極大地提升整個產業鏈的生產效率和質量一致性。

3.多傳感器融合與多維數據分析,未來的紅棗品質檢測不僅僅依賴于單一的高光譜數據,還將結合多傳感器融合技術。例如,結合紅外傳感器、紫外光傳感器、X射線成像等技術,可以獲取更多維度的信息,進行多層次、多角度的質量分析,提升紅棗品質評估的準確性與全面性。此外,通過多維數據分析,能夠更好地揭示紅棗在不同生長階段、不同儲藏條件下的質量變化規律,為產業的精細化管理提供更為科學的依據。

4.基于大數據的紅棗溯源系統,隨著消費者對食品安全和質量的關注不斷增加,紅棗溯源系統的建設將成為未來發展的重點。通過將高光譜成像技術與物聯網(IoT)技術相結合,可以建立全程可追溯的紅棗生產、加工、運輸、銷售等環節的質量管理系統。利用大數據分析,可以實時跟蹤和監測每一顆紅棗的質量信息,確保消費者獲得放心的產品,提升品牌信任度。這不僅有助于保障食品安全,還能夠推動紅棗產業的品牌化和國際化發展。

5.綠色環保與可持續發展,隨著環保法規的日益嚴格,綠色生產和可持續發展已經成為現代農業發展的核心目標。未來,紅棗品質檢測技術將更加注重環保和節能,減少化學品的使用和污染排放,推動紅棗產業的綠色發展。高光譜成像技術作為無損檢測方法,能夠減少樣品的浪費和化學試劑的使用,符合現代農業可持續發展的要求。

6.紅棗品質檢測標準化,隨著市場對紅棗質量要求的提高,質量標準化將成為未來發展的重點。通過高光譜成像技術的深入應用,可以建立一套紅棗品質檢測標準體系,為各類紅棗產品的質量評定提供明確的標準。這不僅有助于保障消費者權益,也為紅棗的貿易、進出口提供了統一的質量依據,推動紅棗行業的國際化進程。

參考文獻

Di, Y., Luo, H., Liu, H., Liu, H., Kang, L., & Tong, Y. (2025). Quantitative Detection of Water Content of Winter Jujubes Based on Spectral Morphological Features.Agriculture,15(5), 482.

Günayd?n, S., ?etin, N., Sa?lam, C., Sacilik, K., & Jahanbakhshi, A. (2025). C*mparative analysis of visible and near-infrared (Vis-NIR) spectroscopy and prediction of moisture ratio using machine learning algorithms for jujube dried under different conditions.Applied Food Research,5(1), 100699.

Jiang, M., Li, Y., Song, J., Wang, Z., Zhang, L., Song, L., Bai, B., Tu, K., Lan, W., & Pan, L. (2023). Study on Black Spot Disease Detection and Pathogenic Process Visualization on Winter Jujubes Using Hyperspectral Imaging System.Foods,12(3), 435.

Li, Y., Ma, B., Li, C., & Yu, G. (2022). Accurate prediction of soluble solid content in dried Hami jujube using SWIR hyperspectral imaging with comparative analysis of models.C*mputers and Electronics in Agriculture,193, 106655.

Liu, Q., Jiang, X., Wang, F., Fan, S., Zhu, B., Yan, L., Chen, Y., Wei, Y., & Chen, W. (2025). Evaluation and process monitoring of jujube hot air drying using hyperspectral imaging technology and deep learning for quality parameters.Food Chemistry,467, 141999.

Liu, Q., Jiang, X., Wang, F., Zhu, B., Yan, L., Wei, Y., & Chen, Y. (2024). Detection of dried jujube from fresh jujube with different variety and maturity after hot air drying based on hyperspectral imaging technology.Journal of Food Composition and Analysis,133, 106378.

Lu, H., Yu, X., Zhou, L., & He, Y. (2018). Selection of Spectral Resolution and Scanning Speed for Detecting Green Jujubes Chilling Injury Based on Hyperspectral ReflectanceImaging.Applied Sciences,8(4), 523.

Ma, X., Wang, C., Luo, H., & Guo, G. (2024). Research on Quality Detection of Jujube (Ziziphus jujuba Mill.) Fruit Based on UAV Multi-Spectrum.Applied Sciences,14(7), 2962.

Pham, Q. T., & Liou, N.-S. (2020). Hyperspectral Imaging System with Rotation Platform for Investigation of Jujube Skin Defects.Applied Sciences,10(8), 2851.

Pham, Q. T., Lu, S.-E., & Liou, N.-S. (2025). Development of sorting and grading methodology of jujubes using hyperspectral image data.Postharvest Biology and Technology,222, 113406.

Shao, Y., Ji, S., Xuan, G., Wang, K., Xu, L., & Shao, J. (2024). Soluble solids content monitoring and shelf life analysis of winter jujube at different maturity stages by Vis-NIR hyperspectral imaging.Postharvest Biology and Technology,210, 112773.

Tan, F., Ye, W., Ruan, S., Cang, H., Zhang, Y., Xing, P., Yan, J., Zhao, M., Di, R., Gao, P., & Xu, W. (2024). Nondestructive detection of multiple qualities of dried jujube in different storage periods based on hyperspectral imaging combined with deep learning.Infrared Physics & Technology,143, 105595.

Thien Pham, Q., & Liou, N.-S. (2022). The development of on-line surface defect detection system for jujubes based on hyperspectral images.C*mputers and Electronics in Agriculture,194, 106743.

Wei, Y., Yuan, M., Hu, H., Xu, H., & Mao, X. (2024). Estimation for soluble solid content in Hetian jujube using hyperspectral imaging with fused spectral and textural Features.Journal of Food Composition and Analysis,128, 106079.

Wu, D., Wan, G., Jing, Y., Liu, G., He, J., Li, X., Yang, S., Ma, P., & Sun, Y. (2023). Hyperspectral imaging combined with deep learning for discrimination of Lingwu long jujube in terms of the time after bruising.Microchemical Journal,194, 109238.

Wu, L., He, J., Liu, G., Wang, S., & He, X. (2016). Detection of common defects on jujubeusing Vis-NIR and NIR hyperspectral imaging.Postharvest Biology and Technology,112, 134–142.

Yu, K., Zhao, Y., Li, X., Shao, Y., Zhu, F., & He, Y. (2014). Identification of crack features in fresh jujube using Vis/NIR hyperspectral imaging combined with image processing.C*mputers and Electronics in Agriculture,103, 1–10.

Yuan, R., Guo, M., Li, C., Chen, S., Liu, G., He, J., Wan, G., & Fan, N. (2022). Detection of early bruises in jujubes based on reflectance, absorbance and Kubelka-Munk spectral data.Postharvest Biology and Technology,185, 111810.

Yuan, R., Liu, G., He, J., Wan, G., Fan, N., Li, Y., & Sun, Y. (2021). Classification of Lingwu long jujube internal bruise over time based on visible near-infrared hyperspectral imaging combined with partial least squares-discriminant analysis.C*mputers and Electronics in Agriculture,182, 106043.

Zhao, Y., Zhang, C., Zhu, S., Li, Y., He, Y., & Liu, F. (2020). Shape induced reflectance correction for non-destructive determination and visualization of soluble solids content in winter jujubes using hyperspectral imaging in two different spectral ranges.Postharvest Biology and Technology,161, 111080.

會員登錄

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

您的留言已提交成功!我們將在第一時間回復您~
在線留言
主站蜘蛛池模板: 抚宁县| 论坛| 铅山县| 贵定县| 阿拉尔市| 宜都市| 资兴市| 安庆市| 巴林右旗| 彭阳县| 玉山县| 高邮市| 巴中市| 宣恩县| 墨玉县| 绥中县| 盐亭县| 永昌县| 沙田区| 凤城市| 宜丰县| 汝城县| 阿坝| 耿马| 瑞昌市| 金门县| 酒泉市| 睢宁县| 山阴县| 惠州市| 渝中区| 冷水江市| 霍林郭勒市| 丰台区| 怀来县| 兴仁县| 芜湖县| 澎湖县| 朔州市| 平乡县| 长岭县|