久久国产精品午夜一区_91精品國產高清久久久久久91_?级毛片免费全部播放_欧美色图在线视频一区二区三区_国产综合亚洲一区二区三区_中文字幕熟女网_国产精品男人爽免费视频_九九无码网战_亚洲日本三级电影在线观看_欧美日韩DVD手机在线不卡

產品展廳收藏該商鋪

您好 登錄 注冊

當前位置:
美國布魯克海文儀器公司>技術文章>測量應用案例-129

技術文章

測量應用案例-129

閱讀:558          發布時間:2018-4-8
 文獻名: Experimental and Computational Insight into Human Mesenchymal Stem Cell Paracrine Signaling and Heterocellular Coupling Effects on Cardiac Contractility and Arrhythmogenicity 

作者 Joshua Mayourian, Timothy J Cashman, Delaine K Ceholski, Bryce V Johnson, David Sachs, Deepak A Kaji, Susmita Sahoo, Joshua M Hare, Roger J Hajjar, Eric A Sobie, Kevin D Costa

Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai

摘要:

Rationale: Myocardial delivery of human mesenchymal stem cells (hMSCs) is an emerging therapy for treating the failing heart. However, the relative effects of hMSC-mediated heterocellular coupling (HC) and paracrine signaling (PS) on human cardiac contractility and arrhythmogenicity remain unresolved.

Objective: To better understand hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity by integrating experimental and computational approaches.

Methods and Results: Extending our previous hMSC-cardiomyocyte HC computational model, we incorporated experimentally calibrated hMSC PS effects on cardiomyocyte L-type calcium channel/SERCA activity and cardiac tissue fibrosis. Excitation-contraction simulations of hMSC PS-only and combined HC+PS effects on human cardiomyocytes were representative of human engineered cardiac tissue (hECT) contractile function measurements under matched experimental treatments. Model simulations and hECTs both demonstrated hMSC-mediated effects were most pronounced under PS-only conditions, where developed force increased approximay 4-fold compared to non-hMSC-supplemented controls during physiologic 1-Hz pacing. Simulations predicted contractility of isolated healthy and ischemic adult human cardiomyocytes would be minimally sensitive to hMSC HC, driven primarily by PS. Dominance of hMSC PS was also revealed in simulations of fibrotic cardiac tissue, where hMSC PS protected from potential pro-arrhythmic effects of HC at various levels of engraftment. Finally, to study the nature of the hMSC paracrine effects on contractility, proteomic analysis of hECT/hMSC conditioned media predicted activation of PI3K/Akt signaling, a recognized target of both soluble and exosomal fractions of the hMSC secretome. Treating hECTs with exosomes-enriched, but not exosomes-depleted, fractions of the hMSC secretome recapitulated the effects observed with hMSC conditioned media on hECT developed force and expression of calcium handling genes (e.g., SERCA2a, L-type calcium channel).

Conclusions: Collectively, this integrated experimental and computational study helps unravel relative hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity, and provides novel insight into the role of exosomes in hMSC paracrine-mediated effects on contractility.

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復您~

對比框

產品對比 產品對比 聯系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機商鋪
010-62081908
在線留言
主站蜘蛛池模板: 响水县| 鹿邑县| 修水县| 永嘉县| 桦南县| 沂水县| 于都县| 永宁县| 大英县| 工布江达县| 衢州市| 肃北| 新乐市| 资源县| 措勤县| 镶黄旗| 贺兰县| 元谋县| 岑巩县| 秦安县| 江津市| 遂川县| 台中市| 漾濞| 东台市| 龙里县| 玛纳斯县| 沙河市| 栖霞市| 博客| 威海市| 赣州市| 茶陵县| 响水县| 海兴县| 乐业县| 军事| 兴义市| 肥乡县| 望都县| 福泉市|