久久国产精品午夜一区_91精品國產高清久久久久久91_?级毛片免费全部播放_欧美色图在线视频一区二区三区_国产综合亚洲一区二区三区_中文字幕熟女网_国产精品男人爽免费视频_九九无码网战_亚洲日本三级电影在线观看_欧美日韩DVD手机在线不卡

產品展廳收藏該商鋪

您好 登錄 注冊

當前位置:
美國布魯克海文儀器公司>資料下載>測量應用案例-20200507

資料下載

測量應用案例-20200507

閱讀:143          發布時間:2020-5-20
提 供 商 美國布魯克海文儀器公司 資料大小 4MB
資料圖片 下載次數 28次
資料類型 PDF 文件 瀏覽次數 143次
免費下載 點擊下載    
 文獻名: Boron removal by electrocoagulation: Removal mechanism, adsorption models and factors influencing removal

 

作者 Ming Chena,b, Orion Dollara, Karen Shafer-Peltierb, Stephen Randtkea, Saad Waseemc, Edward Peltiera

a    Department of Civil, Environmental and Architectural Engineering, University of Kansas, Lawrence, KS, 66045, USA

b    Tertiary Oil Recovery Program, University of Kansas, Lawrence, KS, 66045, USA

c    Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26506, USA

 

摘要:Boron (B), normally present in ground water and sea water, is a vital micronutrient for plants, but is also toxic in excessive amounts. Under typical conditions, aqueous boron is present as boric acid (H3BO3), which is uncharged, making B particularly challenging to remove by mechanisms commonly applicable to removal of trace constituents. Adsorption of B onto aluminum hydroxide solids (Al(OH)3(s)) generated using aluminum-based electrocoagulation (EC) is a promising strategy for B removal. Infrared spectroscopy analysis indicated complexation of B(OH)3 with aluminum hydroxide solids via surface hydroxyl groups, while X-ray and infrared spectroscopy results indicated that the structure of the Al(OH)3(s) was influenced both by EC operating conditions and by water quality. A linear adsorption model predicted B removal well when initial concentrations were lower than 50 mg/L, but fit the experimental data poorly at higher initial B concentrations. The Langmuir adsorption model provided a good fit for a broader range of initial B concentrations (5–1000 mg/L). Factors affecting B adsorption during the EC process, including current intensity, Al dissolution rate, boron concentration, pH, and total dissolved solid (TDS), were investigated. Increasing current intensity initially led to a higher Al dissolution rate, and therefore higher B adsorption, but there was a limit, as further increases in current intensity caused rapid formation of Al(OH)3(s) having a large particle size and a low capacity to complex B. Boron removal decreased as its concentration increased. The best removal of B occurred at pH 8, corresponding to a slightly positive zeta potential for aluminum hydroxide and a small but significant fraction of negatively charged B species. Higher TDS concentrations facilitated the use of higher current intensities, i.e., the limit on the effective Al dissolution rate increased with increasing TDS. Two real water samples (river water and oilfield produced water) spiked with B were treated using EC, resulting in up to 50% B removal from river water (C0 = 10 mg/L, current = 0.2 A) in 2 h, and 80% B removal from produced water (C0 = 50 mg/L, current = 1.0 A) in 2 h.

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復您~

對比框

產品對比 產品對比 聯系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機商鋪
010-62081908
在線留言
主站蜘蛛池模板: 丁青县| 堆龙德庆县| 江安县| 和政县| 赫章县| 团风县| 项城市| 苍梧县| 分宜县| 满洲里市| 都安| 资源县| 合作市| 西盟| 洪洞县| 南丰县| 瑞金市| 广东省| 贵州省| 凤山市| 资阳市| 宁河县| 旬阳县| 四川省| 涿州市| 吐鲁番市| 新乐市| 枣强县| 海南省| 宜丰县| 涪陵区| 普兰县| 龙江县| 上犹县| 邳州市| 永吉县| 密山市| 沙田区| 乌苏市| 宜黄县| 三门县|