交聯聚乙烯(XLPE)以其優異的電氣絕緣性能(介電常數 ε?≈2.3,介質損耗因數 tanδ<0.001)、耐熱性(長期工作溫度 90℃)及機械強度,已成為交直流電力傳輸系統的核心絕緣材料。然而,在實際運行中,XLPE 電纜絕緣性能易受外部環境與工況因素影響而劣化,具體表現為:
交直流電場差異:交流電場下介質極化引發介電損耗發熱,直流電場下空間電荷積累導致電場畸變,兩者均加速絕緣老化 ;
外部因素耦合:電流變化幅度、溫度波動、水分侵入及交聯副產物殘留(如 DCP 分解產生的苯乙酮)會顯著降低絕緣擊穿強度,縮短使用壽命 ;
性能退化機制復雜:介電彌散現象、界面極化及孔洞缺陷等微觀變化與宏觀性能退化存在強關聯性,但其內在規律尚未完一全明晰 。
國內外研究表明,交直流 XLPE 電纜的介電性能差異顯著:直流電纜料因主鏈完整性更高,空間電荷抑制能力優于交流電纜料 ;而電流變化幅度超過 24% 時,絕緣介電參數會出現非線性變化。因此,系統研究交直流 XLPE 電纜的介電性能演變規律,對優化電纜設計、提升運行可靠性具有重要理論與工程價值。
低頻區域(<1 kHz):當電流變化幅度≤12% 時,交直流 XLPE 電纜的 ε′與 ε″無明顯頻率依賴性,未出現介電彌散現象;當幅度增至 16%~24% 時,ε′與 ε″隨頻率降低而顯著增大,這歸因于電流與絕緣界面面積指數級增加,界面極化效應增強 。
高頻區域(>1 kHz):ε′隨電流變化幅度增加呈上升趨勢,但幅度超過 24% 后增速放緩,這與樣品中殘留溶劑形成的孔洞有關 —— 孔洞內空氣的低介電常數弱化了整體極化能力 。
介電彌散臨界值:電流變化幅度達 24% 時,ε′與 ε″均達到最大值(ε′≈3.2,ε″≈0.035),超過此值后參數反而下降。Cole-Cole 曲線(ε′-ε″)顯示,此時樣品存在多個介電松弛時間,印證了介電彌散現象的復雜性。
界面極化主導低頻特性:低頻下,電流變化幅度增大導致 XLPE 與電流界面的電荷積聚增強,極化強度提升,表現為 ε′與 ε″上升;而幅度超過 24% 時,電流團聚效應使有效界面面積減少,極化強度弱化 。
孔洞與殘留溶劑的影響:EDS 分析顯示,樣品斷面存在氯元素(來自氯仿殘留),證實溶劑未完一全去除;這些孔洞不僅降低介電常數,還可能成為局部放電起始點,加速絕緣老化 。
交直流性能差異:直流電纜料因主鏈完整性更高,空間電荷注入閾值(>100 kV/mm)高于交流電纜料(≈80 kV/mm),說明分子結構對介電性能的決定性作用。
本研究通過試驗系統分析了交直流 XLPE 電纜的介電性能演變規律,得出以下結論:
電流變化幅度是影響介電性能的關鍵因素,24% 為臨界值,超過此值會因界面極化弱化與孔洞缺陷導致介電參數下降;
介電彌散現象源于多松弛時間的疊加,與界面極化、殘留溶劑及電流團聚密切相關;
交直流電纜料的性能差異主要源于主鏈完整性,直流料的空間電荷抑制能力更優。